Canonical correlation analysis with linear constraints

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-linear Canonical Correlation Analysis using a RBF networks

A non-linear version of the multivariate statistical technique of canonical correlation analysis (CCA) is proposed through the integration of a radial basis function (RBF) network. The advantage of the RBF network is that the solution of linear CCA can be used to train the network and hence the training effort is minimal. Also the canonical variables can be extracted simultaneously. It is shown...

متن کامل

Non-Linear Canonical Correlation Analysis Using Alpha-Beta Divergence

We propose a generalized method of the canonical correlation analysis using Alpha-Beta divergence, called AB-canonical analysis (ABCA). From observations of two random variables, x ∈ R and y ∈ R, ABCA finds directions, wx ∈ R and wy ∈ R, such that the AB-divergence between the joint distribution of (w xx,w T y y) and the product of their marginal distributions is maximized. The number of signif...

متن کامل

Stochastic Canonical Correlation Analysis

We tightly analyze the sample complexity of CCA, provide a learning algorithm that achieves optimal statistical performance in time linear in the required number of samples (up to log factors), as well as a streaming algorithm with similar guarantees.

متن کامل

Nonparametric Canonical Correlation Analysis

Canonical correlation analysis (CCA) is a classical representation learning technique for finding correlated variables in multi-view data. Several nonlinear extensions of the original linear CCA have been proposed, including kernel and deep neural network methods. These approaches seek maximally correlated projections among families of functions, which the user specifies (by choosing a kernel o...

متن کامل

Continuous canonical correlation analysis

Given a bivariate distribution, the set of canonical correlations and functions is in general finite or countable. By using an inner product between two functions via an extension of the covariance, we find all the canonical correlations and functions for the so-called Cuadras-Augé copula and prove the continuous dimensionality of this distribution.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1992

ISSN: 0024-3795

DOI: 10.1016/0024-3795(92)90211-r